
Securely modifying adaptive bitrate streaming to hide information
Livia Earl

Mentored by Mr. William Newton

The quality ratings by each person for the videos were graphed in a 
scatterplot (Graph 1). To account for a Likert scale, a Friedman test 
was used to compare the overall ratings. The results revealed no 
significant difference between the ratings of the three videos, 
regardless of the steganographic technique’s presence.

This project was organized into five sprints. These included research, 
ensuring communication between the server and client, framework code 
building, technique development, and validation.

Research time was used to build an understanding of tools, including 
Python, GitHub, and PyCharm. Python is packaged with many built-in 
libraries from the community. It was the best approach for this project since 
it supports rapid development, scripting, and object-oriented programming. 
GitHub utilizes commands to share changes to the program with the cloud 
and other engineers. Lastly, PyCharm is an integrated development 
environment that communicates with GitHub directly, so uploading and 
saving code is efficient and simple.

The second sprint started by creating a web server and GitHub 
repository. Figure 1 shows the server, an AWS Light Sail EC2 Instance, 
which allows access to many files as well as the ability to connect to the 
two programs. Additionally, framework code was developed to request 
certain parameters from the user such as the hidden message and the video 
stream. An .mp4 to HLS, as well as the master playlist that consists of both 
the high- and low-resolution streams, was created.

The third and fourth sprints programmed the technique to conceal the 
data (Figure 2). Afterward, the steganographic stream file was replayed 
through Wireshark as a video to test that the file was not corrupted. 

The fifth sprint involved debugging and testing. Once the code worked 
with both text and files embedded, the packets were examined in Wireshark 
and decoded in PyCharm to ensure the message was fully received.

Steganography, the process of hiding information in plain sight, 
through adaptive bitrate streaming is relatively undiscovered. While 
many other techniques have been perfected, steganography in 
streamed video is hard to come across. Adaptive bitrate streaming 
(ABR) is a technique of streaming over HTTP which encodes the 
content at multiple bitrates. This allows the client, any device that 
requests access to a server, to choose which bandwidth cooperates best 
with their network quality. HTTP Live Streaming (HLS), a streaming 
protocol created by Apple to play live audio and video with ABR that 
consists of .m3u8 and .ts file formats, was chosen due to its wide 
range of use (Fecheyr-Lippens, 2010). Since HLS is commonly used, 
the steganographic method has many opportunities to be applied in 
everyday transactions such as efficient and undetectable data security.

The purpose of this project was to create a new steganographic 
method to securely hide information by modifying the adaptive bitrate 
streaming of a video file. It employed both steganography and 
cryptology, the process of encoding information, to secure data.

Results (continued)

Results

Materials & Methods (continued)

Materials & Methods 

Introduction

GitHub and Wireshark were used, in addition to Python, to develop 
this new steganographic technique. GitHub functions as a repository 
for git projects, enabling multiple engineers to collaborate on a code 
base while maintaining the history of changes. Whereas Wireshark 
allows the engineer to inspect each data packet being sent across the 
network after the program has run.

References

Conclusion
The goal of this project, to develop an effective steganographic 

technique to hide information within a video stream using adaptive 
bitrate streaming was achieved. The results of the video quality survey 
revealed no significant difference between the videos, meaning the 
steganographic technique caused no detectable changes by the human 
eye within the stream. This implies that the quality of the stream was 
not noticeably worsened by the hiding of data. While this technique 
was successful, more development could be done to apply this same 
technique to a live video stream instead of after the stream concluded.

In further research, this technique could be implemented to more 
advanced adaptive bitrate streaming that includes additional bitrates, 
so it is available for multiple data sizes. Additionally, this project 
could be used as a baseline for other projects involving steganography 
and cryptology in live streamed data.In this study, 20 subjects were given three videos to watch and evaluate. 

Each of these had the same video content. The only change to each video 
was either no hidden data (placebo), hidden text, or a hidden file. The three 
videos were shown in random order to each subject. They were then asked 
to rate the video quality on a scale from 1–10, 10 being the highest quality 
(no buffering or interruptions and clear visuals).

Fecheyr-Lippens, A. (2010). A Review of HTTP Live Streaming. ISUU, Inc.
https://issuu.com/andruby/docs/http_live_streaming

Graph 1: The Friedman test showed that there was not a significant difference in the 
quality of the placebo (Mdn = 8.0), hidden text (Mdn = 7.0), and hidden file (Mdn = 
7.0) videos, χ2(2) = 3.80, p = .150. Using the alpha level of 0.05 the null hypotheses 
cannot be rejected, indicating there is not a statistically significant difference in the 
quality of the videos regardless of the steganography.

Figure 1: This diagram explains how the communication between the server and 
client was sent. The network interface connection (NIC), a hardware component 
installed on a computer to connect to the network, is marked by a circle where 
Wireshark captures the packets to examine. The message was input into the 
encoder and outputted by the decoder in its original form.

Figure 2: The data was 
hidden within the padding, 
expressed as hexadecimal 
value ‘0xFF’, of each 
network packet. The padding 
was replaced with the hidden 
message after it was encoded 
using DES encryption, found 
in a Python library.

ind = temp.find(b'\xff\xff\xff\xff\xff\xff\xff\xff\xff')
if ind >= 0: # checking 9 values do exist in packet

endIn = ind
while temp[endIn] == 255 and endIn < len(temp) ‐ 1:

endIn += 1
strt = ind + 4
endIn = endIn ‐ 4
numOfBytesToHide = endIn ‐ ind + 1 # bytes hidden
if lc < len(message): # checking length of message

ntemp = temp[:strt] + message[lc:lc +
numOfBytesToHide] + temp[endIn:]
lc += numOfBytesToHide
packet["Raw"].load = ntemp

Bitnami
Server

SMASH 
Encoder Browser

Wireshark:
captures 

packets of 
NIC

SMASH 
Decoder

Hidden message/file to encode into .ts file
• Option 1: accepts text
• Option 2: accepts file

User watching video Hidden message/file

AWS Light Sail EC2 Instance
Laptop / Client

Placebo Text File
1

2

3

4

5

6

7

8

9

10

Q
ua

lit
y 

ra
tin

g 
(s

ca
le

 fr
om

 1
–1

0)

Video type

Video quality ratings for placebo, file, and text


