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Artificial intelligence is one of  the most rapidly developing scientific 
fields. Contemporary examples of  the capabilities of  artificial intelligence 
are the images, art, and articulate thoughts that programs such as DALL-E 
and ChatGPT generate. These programs utilize machine learning and 
natural language processing (NLP), two subfields of  artificial intelligence. 
Machine learning is comprised of  programs which improve their 
performance on a task given repeated trials. This is useful for NLP tasks, in 
which a computer attempts to interpret human language. An example of  an 
NLP application exists in computational chemistry is molecular 
representation (the way in which a molecule’s identity is expressed). By 
representing molecules through a concise text string, the amount of  
computer processing required is reduced. Several different machine 
learning approaches have been used for molecular representation, the most 
successful utilizes a variational autoencoder (VAE). The success of  a VAE 
can be attributed to its ability for continuous representation, ensuring 
unique outputs which improve efficiency (Wigh et al., 2022). The junction 
tree variational autoencoder (JTVAE), an algorithm which produces a 
scaffold over chemical substructures and combines them into one string 
utilizing a VAE, was investigated for this reason (Jin et al., 2019). The 
purpose of  the project was to evaluate the accuracy of  the JTVAE in 
molecular representation.

The JTVAE model was constructed over two iterations on a limited 
biochemical data set. The goal was to improve the model’s predictive 
accuracy over multiple iterations. The model was evaluated on its ability to 
predict molecular density (g/mol) and heat of  formation (kJ/mol).

The percent error was tracked from iteration one to two (Graphs 1 and 
2). Descriptive statistics were used to determine the difference between 
predicted and actual values for both molecular density (g/mol) and heat of  
formation (kJ/mol) across both iterations of  the model. 

molecular representation model. The first model was trained with 
molecular graph encodings (Balakrishnan et al., 2021). Once the code could 
be executed without syntax errors (the first iteration of  the program), 
predicted values for density (g/mol) and heat of  formation (kJ/mol) were 
collected, to determine the model’s predictive accuracy (Tables 1 and 2). 
This was repeated in the second iteration where the model was trained with 
a combination of  graph encodings and semantic information.

The purpose of  this project, to develop a machine learning approach to 
molecular representation utilizing a JTVAE framework, was successfully 
completed. The percentage change (Table 3) was calculated from iteration 
one to iteration two to confirm model improvement across these iterations.

Analysis of  this project was limited to organic molecules. In further 
studies, inorganic molecules should be used to further determine accuracy. 
Predictive accuracy should also improve with a larger quantity of  molecules 
in a data set. This project supports JTVAE as an effective pathway for the 
development of  molecular representation. An application of  this molecular 
representation is in the search for molecules in the pharmaceutical, 
energetic, and materials industries.
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Graph 2 (right): A 
box-and-whisker plot 
of  the percent error 
between predicted 
and actual values for 
heat of  formation 
(kJ/mol) of  machine 
learning model one 
(M = −30.41, SD = 
209.24) and model 
two (M = 13.55, SD
= 216.16). A value of  
zero indicates a 
perfect prediction (n 
= 81).

Results

Graph 1 (right): A 
box-and-whisker plot 
of  the percent error 
between predicted and 
actual values for 
molecular density 
(g/mol) of  machine 
learning model one (M
= −0.183, SD = 3.495) 
and model two (M = 
−0.015, SD = 2.964). 
A value of  zero 
indicates a perfect 
prediction (n = 81).

Table 1 (above): The difference between algorithm-predicted and actual values for 
density (g/mol) of  three specific molecule over the two iterations of  the model.

Table 2 (above): The difference between algorithm-predicted and actual values for heat 
of  formation (kJ/mol) of  three specific molecules over the two iterations of  the model.

Iteration 2 percent
error

Iteration 1 percent
errorSMILES string

4.7956.260c1(cc(c(c(c1)N(=O)=O)N(=O)=O)N(=O)=O)C

2.5237.905O=N(=O)C1=C(C(=NN1)N(=O)=O)N(=O)=O

0.2101.331n1c(nn(c1N)/C(=N/N(=O)=O)/N)N(=O)=O

Iteration 2 percent
error

Iteration 1 percent
errorSMILES string

−166.45−193.57c1(cc(c(c(c1)N(=O)=O)N(=O)=O)N(=O)=O)C

124.40214.60O=N(=O)C1=C(C(=NN1)N(=O)=O)N(=O)=O

−29.84−36.73n1c(nn(c1N)/C(=N/N(=O)=O)/N)N(=O)=O

Google Colab was selected as the medium for coding, which utilizes 
Python. For this reason, prerequisite training was completed through the 
“Machine Learning Crash Course”, an online machine learning tutorial for 
Google Colab. Further training from the data science website Kaggle 
provided experience in producing predictive algorithms. This served as a 
basis for use of  predictive properties to be utilized in JTVAE molecular 
representation. With preliminary training codes completed, work began on 
producing a functional, first program for molecular representation. A set 
of  1,305 molecules was obtained through Springer API as a sample 
database. Molecules were selected by using keyword query searches for: 
“amino”, “methyl”, “phosphate”, “hydroxyl”, “carboxyl”, and “carbonyl”. 
The article abstracts for each molecule in the set were downloaded as .json
files containing information on molecular geometry and features, as well as 
their SMILES strings (a text string representing a molecule). A literature 
alignment model was created in Python to align the text of  the named 
entities (important features). The named entities were uploaded to the

Percent change in standard 
deviation

Percent change in mean 
errorMolecular trait

15.20%91.80%Molecular density

−3.30%55.44%HOF

Table 3 (above): The percent change in mean error and standard deviation for molecular 
density and heat of  formation over the two model iterations.
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